Moment Closure Approximations in a Genetic Negative Feedback Circuit
نویسندگان
چکیده
Auto-regulation, a process wherein a protein negatively regulates its own production, is a common motif in gene expression networks. Negative feedback in gene expression plays a critical role in buffering intracellular fluctuations in protein concentrations around optimal value. Due to the nonlinearities present in these feedbacks, moment dynamics are typically not closed, in the sense that the time derivative of the lower-order statistical moments of the protein copy number depends on high-order moments. Moment equations are closed by expressing higher-order moments as nonlinear functions of lower-order moments, a technique commonly referred to as moment closure. Here, we compare the performance of different moment closure techniques. Our results show that the commonly used closure method, which assumes a priori that the protein population counts are normally distributed, performs poorly. In contrast, conditional derivative matching, a novel closure scheme proposed here provides a good approximation to the exact moments across different parameter regimes. In summary our study provides a new moment closure method for studying stochastic dynamics of genetic negative feedback circuits, and can be extended to probe noise in more complex gene networks.
منابع مشابه
Moment closure and the stochastic logistic model.
The quasi-stationary distribution of the stochastic logistic model is studied in the parameter region where its body is approximately normal. Improved asymptotic approximations of its first three cumulants are derived. It is shown that the same results can be derived with the aid of the moment closure method. This indicates that the moment closure method leads to expressions for the cumulants t...
متن کاملAdaptive Moment Closure for Parameter Inference of Biochemical Reaction Networks
Continuous-time Markov chain (CTMC) models have become a central tool for understanding the dynamics of complex reaction networks and the importance of stochasticity in the underlying biochemical processes. When such models are employed to answer questions in applications, in order to ensure that the model provides a sufficiently accurate representation of the real system, it is of vital import...
متن کاملMoment closure approximations for stochastic kinetic models with rational rate laws.
Stochastic models are often used when modelling chemical species that have low numbers of molecules. However, as these models become large, it can become computationally expensive to simulate even a single realisation of the system since even efficient simulation techniques have a high computational cost. One possible technique to approximate the stochastic system is moment closure. The moment ...
متن کاملFilm cooling effectiveness in single row of holes: First moment closure modeling
The present article focuses on the evaluation of a first-moment closure model applicable to film cooling flow and heat transfer computations. The present first-moment closure model consists of a higher level of turbulent heat flux modeling in which two additional transport equations for temperature variance kθ and its dissipation rate εθ are ...
متن کاملA variational approach to moment-closure approximations for the kinetics of biomolecular reaction networks.
Approximate solutions of the chemical master equation and the chemical Fokker-Planck equation are an important tool in the analysis of biomolecular reaction networks. Previous studies have highlighted a number of problems with the moment-closure approach used to obtain such approximations, calling it an ad hoc method. In this article, we give a new variational derivation of moment-closure equat...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2014